Role of Phospholipid Transfer Protein in High-Density Lipoprotein– Mediated Reverse Cholesterol Transport
نویسندگان
چکیده
Reverse cholesterol transport (RCT) describes the process whereby cholesterol in peripheral tissues is transported to the liver where it is ultimately excreted in the form of bile. Given the atherogenic role of cholesterol accumulation within the vessel intima, removal of cholesterol through RCT is considered an anti-atherogenic process. The major constituents of RCT include cell membrane- bound lipid transporters, plasma lipid acceptors, plasma proteins and enzymes, and lipid receptors of liver cell membrane. One major cholesterol acceptor in RCT is high-density lipoprotein (HDL). Both the characteristics and level of HDL are critical determinants for RCT. It is known that phospholipid transfer protein (PLTP) impacts both HDL cholesterol level and biological quality of the HDL molecule. Recent data suggest that PLTP has a site-specific variation in its function. Moreover, the RCT pathway also has multiple steps both in the peripheral tissues and circulation. Therefore, PLTP may influence the RCT pathway at multiple levels. In this review, we focus on the potential role of PLTP in RCT through its impact on HDL homeostasis. The relationship between PLTP and RCT is expected to be an important area in finding novel therapies for atherosclerosis.
منابع مشابه
Phospholipid transfer protein and atherosclerosis: genetic studies take aim at a moving target.
Phospholipid transfer protein (PLTP) is a member of the lipid transfer/lipopolysaccharide-binding protein family that first attracted attention by virtue of its functions in intravascular lipoprotein metabolism. These include its key role in mediating transfer of phospholipids from very-lowdensity lipoprotein to high-density lipoprotein (HDL) in conjunction with very-low-density lipoprotein lip...
متن کاملLipid Transfer Proteins, HDL Metabolism, and Atherogenesis
Plasma high density lipoprotein (HDL) levels show an inverse relationship to atherogenesis, in part reflecting the role of HDL in mediating reverse cholesterol transport. The transfer of HDL cholesterol to the liver involves 3 catabolic pathways: the indirect, cholesteryl ester transfer protein (CETP)–mediated pathway, the selective uptake (scavenger receptor BI) pathway, and a particulate HDL ...
متن کاملPlasma PLTP (phospholipid-transfer protein): an emerging role in 'reverse lipopolysaccharide transport' and innate immunity.
Plasma PLTP (phospholipid-transfer protein) is a member of the lipid transfer/LBP [LPS (lipopolysaccharide)-binding protein] family, which constitutes a superfamily of genes together with the short and long PLUNC (palate, lung and nasal epithelium clone) proteins. Although PLTP was studied initially for its involvement in the metabolism of HDL (high-density lipoproteins) and reverse cholesterol...
متن کاملHigh density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI.
The role of high density lipoprotein (HDL) phospholipid in scavenger receptor BI (SR-BI)-mediated free cholesterol flux was examined by manipulating HDL(3) phosphatidylcholine and sphingomyelin content. Both phosphatidylcholine and sphingomyelin enrichment of HDL enhanced the net efflux of cholesterol from SR-BI-expressing COS-7 cells but by two different mechanisms. Phosphatidylcholine enrichm...
متن کاملRecent advances in physiological lipoprotein metabolism.
Research into lipoprotein metabolism has developed because understanding lipoprotein metabolism has important clinical indications. Lipoproteins are risk factors for cardiovascular disease. Recent advances include the identification of factors in the synthesis and secretion of triglyceride rich lipoproteins, chylomicrons (CM) and very low density lipoproteins (VLDL). These included the identifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2011